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Abstract
This paper experimentally observes the behavior of Dis-

crete Particle Swarm Optimization (DPSO), a variation of
Particle Swarm Optimization (PSO) to deal with binary
variables, in Number Partitioning Problem (NPP). PSO
and DPSO are optimization techniques inspired by flock-
ing birds. NPP is a combinatorial optimization problem
with binary variables to partition a set of numbers into two
sets, so that the sum of them in each set is as close as pos-
sible. Experiments have been performed with problems in
which phase transition (a phenomenon of abrupt change of
average complexity) was observed in previous works.
keywords: discrete particle swarm optimization, number
partitioning problem, phase transition

1 Introduction

Particle Swarm Optimization (PSO) has been developed
by Eberhart and Kennedy in 1995 [1], inspired by the
movement of flocking birds. PSO updates each individual’s
position in the search space based on its velocity and some
best found solutions in the past. In PSO, the position of
each particle denotes a potential solution to the optimiza-
tion problem. PSO has been introduced as an optimization
technique in real-number spaces, where the trajectories are
defined as changes in position on some dimension.

Discrete Particle Swarm Optimization (DPSO) is a
modification of the PSO algorithm for solving problems
with binary-valued solution elements [2]. In DPSO, a par-
ticle position is a binary value changing between 0 and 1.
A particle velocity is a probability that its position takes on
0 or 1. Several other forms of discrete optimization have
been explored using PSO other than DPSO [3, 4].

Number Partitioning Problem (NPP) is a famous combi-
natorial optimization problem whose variables are binary:
given a set of numbers, partition it into two sets, such that
the sum of the numbers in each set is as equal as possi-
ble [5]. NPP is NP-complete, and is contained in many
scheduling applications.

This paper experimentally observes the behavior of
DPSO in NPP. We focus on particle movements with
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Figure 1: Calculation of velocity vector

varying inertia coefficient, and the search performance of
DPSO with instances in which a phase transition was ob-
served in previous works.

2 Discrete Particle Swarm Optimization

PSO’s optimizing process is quite simple. Each particle
remembers the best previous position of it and the best pre-
vious position of all particles in the swarm. Each particle
searches a good solution using two calculations. One is ve-
locity update based on the present velocity of a particle, the
best previous position of any particle and the best previous
position of all particles in the swarm (Figure 1). Another is
position update based on the present velocity.

vvvk+1
i = w ·vvvk

i +c1 · r1 ·
(

pppi −xxxk
i

)
+c2 · r2 ·

(
pppg−xxxk

i

)
(1)

xxxk+1
i = xxxk

i +vvvk+1
i (2)

wherevvvi , xxxi , pppi are the velocity, position, and best previous
positions of particlei at stepk respectively, andpppg is the
best previous position of all particles in the swarm.w is
the inertia coefficient which slows the velocity over time to
prevent explosions of the swarm and ensure ultimate con-
vergence,c1 is the weight given to the attraction topppi and
c2 is the weight given to the attraction topppg. r1 and r2

are samplings of a uniformly-distributed random variable

in [0,1]. Velocity
∣∣∣vk+1

i j

∣∣∣ does not go beyondvmax, where j

is the dimension of particle.
DPSO is a modification of the PSO algorithm for solv-

ing problems with binary-valued solution elements [2].
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c 1
(a) c1 = 1.0 , c2 = 1.0. (b) w = 0.8 , c2 = 1.0. (c) w = 1.0 , c2 = 1.0.
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c 2
(d) w = 1.2 , c2 = 1.0. (e) w = 0.8 , c1 = 1.0. (f) w = 1.0 , c1 = 1.0.
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(g) w = 1.2 , c1 = 1.0.

Figure 2: Experimental results on parameterw , c1 , c2 .

Similar to the optimization process of PSO, DPSO iterates
velocity calculation and position update. However, a parti-
cle position in DPSO is expressed as a set of discrete value
(0 or 1) to solve problems with binary-valued solution ele-
ments, while a particle position in PSO is expressed as a set
of real value. In DPSO, each velocity value is transformed
to the range (0, 1) bys(vi j ), and the particle position value
is obtained by comparing this transformed element with a
uniform random value.

xk+1
i j =

{
1 if (r() < s(vi j ))
0 otherwise

(3)

s(x) =
1

1+e−x (4)

where (4) is the sigmoid function, andr is a value sampled
randomly from 0.0 to 1.0.

3 Number Partitioning Problem
NPP is a famous combinatorial optimization prob-

lem whose variables are binary: a finite setA =

{
ak

∣∣ k∈ {1. . .N}
}

of N positive integers, find a partition
of A into two subsetA1 andA2 such that difference

E(A) =

∣∣∣∣∣ ∑
i∈A1

ai − ∑
i∈A2

ai

∣∣∣∣∣ (5)

is minimized [5]. A solution withE = 0 or E = 1 for ∑A
even or odd is called “perfect solution” for obvious reasons.

The phase transition in NPP is a phenomenon that there
is a boundary that separates the “easy-to-solve” from the
“hard-to-solve” phase. Phase transitions have been ob-
served in many different NP-complete problems [7]. NPP’s
phase transition goes hand in hand with a transition in prob-
ability of perfect solutions [6]. Mertens [6] has showed
that NPP has a phase transition in average complexity
from experiments using complete differencing and com-
plete greedy.
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(a) A succees case whenw = 0.8,
c1 = 1.0, c2 = 1.0.

(b) A failed case whenw = 0.8,
c1 = 1.0, c2 = 1.0.

(c) A success case whenw = 1.0,
c1 = 1.0, c2 = 1.0.
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(d) A failed case whenw = 1.0,
c1 = 1.0, c2 = 1.0.

(e) A success case whenw = 1.2,
c1 = 1.0, c2 = 1.0.

(f) A failed case whenw = 1.2,
c1 = 1.0, c2 = 1.0.
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(g) A success case whenw = 1.0,
c1 = 2.2, c2 = 0.2.

Figure 3: Analytical results on varyingw.

4 Computational Experiments
4.1 Pre-experimental planning

Section 4 evaluates the effectiveness of DPSO which
is applied to NPP. In this paper, “search costs” is
the fitness calculation time, which is calculated by
number of particle× iterations counts. “Optimal solution”
is a solution with minimal value ofE(A) calculated by (5)
in each problem instance, which is not always a perfect so-
lution. The number of particles,vmax, iteration limit were
500, 5.0, 20,000, respectively. We performed 20 runs for
each condisiton.

4.2 Experiment 1

At first, we experimented with DPSO performance
changing parametersw, c1, andc2 in Experiment 1. This
experiment uses an instance involvingN = 100 positive in-
teger numbers less than 1,000,000.

First, we examined the effect of modifying parameter
w between 0.0 and 3.0 with fixedc1 = 1.0 andc2 = 1.0.
Figure 2(a) shows the result on discovery rate of optimal
solutions and search costs. The graph shows a tendency
that DPSO could find the optimal solution with higher rate
whenw < 1.0 than whenw > 1.0.

Next, we examined the effects of parametersc1 andc2

changed between 0.0 and 10.0, in turn.w was set to 0.8,
1.0, and 1.2. Figure 2(b), (c), and (d) show the results on
c1, and Figure 2(e), (f), and (g) show the results onc2.

From Figure 2(b) and (e),c1 and c2 did not seem to
affect the search performance of DPSO whenw = 0.8. In
particular, the fact that the case withc2 = 0.0 was not so
worse than the cases withc2 > 0.0 means that interaction
between particles did not work properly whenw = 0.8.

Figure 2(c), (d), (f), and (g) indicate that values ofc1

lower than 1.0 or values ofc2 higher than 1.0 causes dete-
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riorations in search performance.

4.3 Experiment 2

We analyzed DPSO behaviors with varyingw in Ex-
periment 2. Parameters(w,c1,c2) are set to(0.8,1.0,1.0),
(1.0,1.0,1.0), (1.2,1.0,1.0), and(1.0,2.2,0.2), which was
is the best parameter set in Experiment 1. The same prob-
lem instance is used as in Experiment 1.

Figure 3 shows transitions of some criteria in a success
and failed cases: averageE(pppk

g), average hamming dis-

tance betweenxxxk
i andxxxk−1

i (D(xxxk
i ,xxx

k−1
i )), average hamming

distance betweenxxxk
i andpppk

i (D(xxxk
i , pppk

i )), average hamming

distance between allpppk
i (D(allpppk

i )), and average
∣∣∣vk

i j

∣∣∣.
From Figure 3(a) and (b),D(xxxk

i ,xxx
k−1
i ) and D(allpppk

i )
were steady at around 50, which denotes that particles
moved quite actively, rapidly and separately like random

search whenw = 0.8. Note that average
∣∣∣vk

i j

∣∣∣ leveled out at

about 1.0. In DPSO, lowervk
i j means that a particlei moves

fast, oppositely to the meaning of the word “velocity”.
From Figure 3(e) and (f),D(xxxk

i ,xxx
k−1
i ) and D(allpppk

i )
rapidly converged at around 1.0 and 50 respectively, which
denotes that each particle moved and converged at scattered
places indifferently to each other whenw = 1.2. Average∣∣∣vk

i j

∣∣∣ steeply grew and keptvmax.

From Figure 3(c) and (d),D(xxxk
i ,xxx

k−1
i ) and D(allpppk

i )
gradually decreased, which denotes that particles slightly
slowed down and crowded into a solution. The best param-
eter set(w,c1,c2) = (1.0,0.2,2.2) also allowed particles to
move cooperatively, as shown in Figure 3(g).

4.4 Experiment 3

Finally, we tested DPSO with instances in which NPP’s
phase transition has been observed. According to the per-
vious work [6], instances whose numbers of elementsN
are from 8 to 120 were used. Element numbers of them
were less than 220. 100 instances were generated for each
number of elements.

Figure 4 shows the discovery rate of optimal solutions
and the probability that a given instance has a perfect solu-
tion. Figure 5 shows the transitions of the discovery rate of
optimal solution. As shown in these figures, the discovery
rate drastically falls down at the same pointN = 24 as in
the previous work [6].

5 Conclusion

In this paper, we studied the performance of DPSO in
NPP. Experiments have showed that the behavior of DPSO
deeply depends on a inertia coerricientw, and the existence
of a phase transition of DPSO. In future, we plan to exam-
ine other discretize methods for PSO.
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